
Dupline® Master Module Type G 2196 00..

- Dupline® Channel Generator
- 128 signals and DC power supply on 3 wires
- RS 485 port for interfacing to control system
- Automatic communication with specific PLC's/Controllers
- Multidropping of up to 16 G 2196 0000 or G 2196 0005 on RS 485
- Cost-effective design on open PCB (86 x 54 mm)
- LED-indications for supply, Dupline[®] carrier and RS 485 Tx
- DC-supply

DC supply

Product Description

G 2196 00.. is a combined module on open printed circuit board. The unit performs three functions: Dupline® channel generator, power supply synchronization (enables 3-wire system with supply) and RS 485 interface. It has been designed as a cost-effective solution for multiplexing the push-button and lamp signals in elevators.

The standard version of the Master Module has a general-purpose RS 485-protocol available, but to facilitate the interfacing easy, special protocol versions of the master module for automatic communication with specific PLC's/Controllers are developed continuously. These are listed under "Type Selection".

Ordering Key Type: Dupline® Open PCB Combined module Interface type

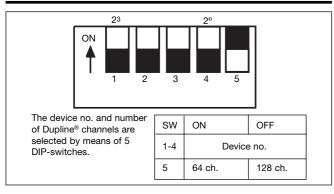
Type Selection

Supply	PLC Interface type	Ordering no.	PLC Interface type	Ordering no.
20-30 VDC	Standard protocol	G 2196 0000 700	Mitsubishi FX- and A-series	G 2196 0003 700
20-30 VDC	Lucky Goldstar K-series	G 2196 0001 700	Omron	G 2196 0004 700
20-30 VDC	GE-Fanuc 90-30 series	G 2196 0002 700	Modbus RTU Slave	G 2196 0005 700

Input/Output Specifications

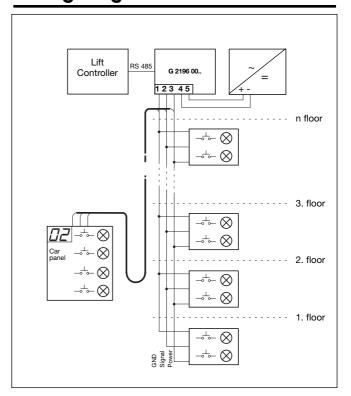
<u> </u>	
Power output Output voltage Output current Short circuit protection Output voltage drop	20-30 VDC (pulsating) < 4.0 A @ 25°C 4 A quick acting fuse < 1.0 V
Dupline® carrier Output voltage Current Short circuit protection Scan time 128 channels 64 channels	8.2 V (pulsating) < 40 mA Yes 132.2 ms 69.8 ms
RS 485 communication port Communication speed Connection Pin assignment Data line + (B) Data line - (A) 5 VDC supply + 5 VDC GND Current load 5 VDC supply Dielectric voltage RS 485 port - Dupline®	19200 Baud 9 pole female SUB-D Pin 3 Pin 8 Pin 6 Pin 5 < 150 mA > 2 kVAC (rms)
Settings Device no. (for RS 485) (only G 2196 0000) 64 or 128 channels	4 DIP-switches 1 DIP-switch

Supply Specifications


Power supply Operational voltage (V _{in}) Reverse polarity protection Current consumption Power dissipation Inrush current Transient protection voltage Dieelectric voltage Supply - Dupline® Supply - RS 485 port	Overvoltage cat. III (IEC 60664) 20-30 VDC None < 100 mA < 6 W < 200 mA 800 V None > 2 kVAC (rms)

General Specifications

Power ON delay	2 s	
Indication for		
RS 485 Tx	LED, red	
Supply ON	LED, green	
Dupline® carrier	LED, yellow	
Environment		
Pollution degree	2 (IEC 60664)	
Operating temperature	0° to +50°C (+32° to +122°F)	
Storage temperature	-50° to +85°C (-58° to +185°F)	
Humidity (non-condensing)	20 to 80%	
Mechanical resistance		
Shock	15 G (11 ms)	
Vibration	2 G (6 to 55 Hz)	
Dimensions	86 x 54 mm open printed	
	circuit board, 4.2 mm hole in	
	each corner for mounting	
Weight	100 g	


DIP-switch Setting for G21960000700

Accessories

Data brochure DAT DMM (RS 485 protocol specification and design hints)

Wiring Diagram

Terminal	Function
1	GND
2	Dupline® Signal
3	Power Out
4	GND
5 DC Power Supply	

Mode of Operation

The G 219600.. Dupline® master module (DMM) is part of the Dupline® concept for multiplexing the push-button and lamp signals in elevators. As shown on the wiring diagram a 3-wire bus with signal, DCpower and common GND goes throughout the shaft to all the push-button panels and floor indicators, and to the car. The DMM is connected to a standard DC-supply which it synchronizes with the Dupline® carrier signal before it is output to supply the push-button panels. The synchronization is necessary in order to enable

the Dupline® and DC-supply to share the GND-wire.

The most cost-effective way to interface the elevator controller to the master module is to make use of the RS 485 port (see wiring diagram). In this way, the size and the number of controller I/O-board(s) can be reduced significantly, since the I/O-terminals for lamps, pushbuttons and floor-indicators are no longer needed. Based on requests from customers, special versions of the master module for automatic communication with specific

PLC's/Controllers are developed continuously. This makes the interfacing very easy, since these devices automatically transfer the Dupline® data to/ from the internal memory of the PLC/ Controller. The versions available for the moment are listed under "Type Selection". More detailed information about interfacing to the individual PLC-types are available. The standard version G 2196 0000 700 utilizes a general purpose protocol for implementation in any PLC/Controller software. In this case, the communication is not automatic, since

it must be driven from the application software.

Another way to implement the elevator controller interface is to make hardwired connections between the I/O's of the controller and Dupline®-modules positioned next to it, thus making use of the peer-to-peer communication capability of Dupline®. This solution is less cost-effective, but highly flexible since existing and different control-systems can be used.